Euro-Par 2024 | Track 2: Scheduling, Resource Management, Cloud, Edge Computing, and Workflows | International European Conference on Parallel and Distributed Computing Track 2: Scheduling, Resource Management, Cloud, Edge Computing, and WorkflowsEuro-par

Track 2 - Scheduling, Resource Management, Cloud, Edge Computing, and Workflows

Chairs

Program Committee

  • Marco Aldinucci, University of Torino
  • Atakan Aral, University of Vienna
  • Luciana Arantes, Universite Pierre et Marie Curie-Paris6
  • Marcos Assuncao, ETS Montreal
  • Olivier Beaumont, INRIA
  • Edson Borin, University of Campinas
  • Francisco Brasileiro, UFCG
  • Rodrigo N. Calheiros, Western Sydney University
  • Valeria Cardellini, University of Roma "Tor Vergata"
  • Oscar Carrillo, CPE Lyon
  • Harold Castro, Universidad de Los Andes
  • Daniel Cordeiro, University of São Paulo
  • Pierre-Francois Dutot, Université Grenoble Alpes
  • Rafael Ferreira da Silva, Oak Ridge National Laboratory
  • Alfredo Goldman, University of São Paulo
  • Carlos Guerrero, Universitat de les Illes Balears
  • Laurent Lefevre, INRIA
  • Jiajia Li, NCSU
  • Maciej Malawski, AGH University of Science and Technology
  • Zoltan Mann, Complex Cyber Infrastructure (CCI) group, University of Amsterdam
  • Loris Marchal, CNRS
  • Alba Cristina M. A. Melo, University of Brasilia (UnB)
  • Carla Osthoff Barros, National Laboratory for Scientific Computing LNCC
  • Guillaume Pallez, INRIA
  • Fanny Pascual, LIP6, Université Pierre et Marie Curie - Paris 6
  • Radu Prodan, University of Klagenfurt
  • Veronika Rehn-Sonigo, FEMTO-ST
  • Silvio Rizzi, Argonne National Laboratory
  • Krzysztof Rzadca, University of Warsaw
  • Uwe Schwiegelshohn, TU Dortmund University
  • Oliver Sinnen, University of Auckland
  • Javid Taheri, Karlstad University
  • Frédéric Vivien, INRIA
  • Ramin Yahyapour, GWDG - University of Göttingen

 

Focus

  • Scheduling algorithms for homogeneous and heterogeneous platforms
  • Theoretical foundations of scheduling algorithms
  • Real-time scheduling on parallel and distributed machines
  • Scheduling, coordination and overhead at extreme scales
  • Energy and temperature awareness in scheduling and load balancing
  • Resource management for HPC and Clouds
  • Workload characterization and modelling
  • Workflow and job scheduling
  • Performance models for scheduling and load balancing
  • Heterogeneous parallel programming models for the computing continuum
  • Workflow environments for the computing continuum
  • Parallel programming in the edge and in the computing continuum

In cooperation

Organized by

Supported by